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Abstract— Tokenization plays a critical role in processing 

agglutinative languages, where a single word can encode multiple 

morphemes carrying syntactic and semantic information. This study 

evaluates the impact of various tokenization strategies—word-level, 

character-level, n-gram, and Byte Pair Encoding (BPE)—on the 

quality of static word embeddings generated by Word2Vec for 

Turkish and Finnish. Using a 10,000-article Wikipedia corpus, we 

trained models under low-resource conditions and evaluated them 

on a Named Entity Recognition (NER) task. Despite the theoretical 

appeal of subword segmentation, word-level tokenization 

consistently outperformed all alternatives in both initial and 

improved experiments. These findings suggest that in agglutinative, 

low-resource contexts, preserving boundaries via word-level 

tokenization may yield better embedding performance than complex 

statistical methods. This has practical implications for developing 

NLP pipelines for under-resourced languages where annotated data 

and computing power are limited. 

Keywords— Preprocessing, Tokenization, Agglutinative Languages, 

Word2Vec, Low-Resource Natural Language Processing                                           

I. INTRODUCTION  

In recent years, large language models (LLMs) have 

revolutionized natural language processing by learning rich 

patterns from massive text corpora. A foundational step in 

training these models is tokenization: the process of breaking 

text into discrete units, or tokens, that serve as the model’s 

inputs. Once tokenized, each unit is mapped to a vector, 

forming the building blocks of the model’s understanding of 

language. While modern LLMs use dynamic, contextual 

embeddings that shift with surrounding context, earlier 

approaches like Word2Vec rely on static embeddings, where 

each token is assigned a fixed vector. Though less powerful 

overall, these static models serve as a valuable tool for studying 

the isolated effects of different tokenization strategies. 

Tokenization becomes especially critical in languages with 

complex morphology. Agglutinative languages such as Turkish 

and Finnish construct words by stringing together affixes, often 

encoding meanings that would require full phrases in English. 

For example, the Turkish word evlerimizde translates to “in our 

homes,” blending a root “ev” with plural “ler”, possessive 

“imiz”, and locative “de” suffixes. In such cases, naive word-

level tokenization can lead to sparsity (rare words containing 

no meaningful data), vocabulary bloat (redundancies in 

generating embeddings), and weakened generalization (the 

ability to adapt to unseen data) in NLP systems. 

To address this, researchers often turn to subword segmentation 

strategies such as character-level tokenization, n-grams, or Byte 

Pair Encoding (BPE), which aim to break words into smaller, 

reusable units. These techniques promise to reduce sparsity and 

improve generalization, especially for morphologically rich or 

low-resource languages. However, the actual performance 

tradeoffs of these methods, especially on small or mid-sized 

corpora, remain underexplored. 

In this study, we investigated how different tokenization 

strategies affected the quality of static embeddings in 

agglutinative languages. We trained Word2Vec models on 

Turkish and Finnish Wikipedia corpora using four tokenization 

methods: word-level, character-level, n-grams, and BPE. To 

evaluate downstream utility, we tested each model on Named 

Entity Recognition (NER) tasks. While Turkish and Finnish are 

relatively well-resourced, they offered a valuable window into 

the broader challenges of processing morphologically rich 

languages with limited data. 

Surprisingly, our findings show that simple word-level 

tokenization often outperforms more modern subword methods, 

especially on smaller corpora. These results suggest that 

linguistic structure, rather than purely statistical segmentation, 

may offer greater advantages in certain contexts. For 

practitioners working with under-resourced languages, this 

insight could inform the design of more efficient, linguistically 

aligned NLP pipelines, even challenging the subword-centric 

strategies employed by many modern multilingual LLMs. 

 

II. RELATED WORK 

Tokenization is one of the earliest and most extensively studied 

tasks in natural language processing [1]. In agglutinative 

languages such as Finnish, Estonian, and Turkish, complex 



 

morphological structures present challenges for standard 

speech-to-text and text segmentation tools. Traditional word-

level tokenization often leads to out-of-vocabulary (OOV) 

errors due to the theoretically infinite ways of constructing 

vocabulary in such languages [2]. To address this, rule-based 

morphological analysis and statistical segmentation methods 

have been explored, both demonstrating improvements over 

whitespace-based approaches [3], [1]. 

Unsupervised subword tokenization techniques, such as BPE, 

have also shown promise in reducing OOV rates, though their 

effectiveness can vary depending on the downstream task and 

language morphology [4]. These approaches are particularly 

relevant for low-resource languages, where limited data 

availability exacerbates common challenges such as sparsity 

and generalization in NLP systems [5]. 

Prior work has highlighted the broader implications of 

improving NLP for low-resource agglutinative languages, 

including digital inclusion, cultural preservation, and the 

expansion of language technology to underrepresented 

populations [5]. Comparative studies involving Quechua and 

Finnish have demonstrated the feasibility of cross-linguistic 

tokenization strategies, but few works have evaluated how 

basic preprocessing methods—when paired with classic 

embedding models like Word2Vec—perform on concrete 

evaluation tasks such as Named Entity Recognition (NER) 

using modest corpora [4]. 

This paper addresses that gap by systematically evaluating 

tokenization strategies on Turkish and Finnish using limited 

Wikipedia corpora, simulating low-resource conditions and 

assessing performance on NER tasks. 

III. METHODOLOGY 

This study uses Wikipedia corpora in Turkish and Finnish to 

simulate low-resource language conditions. After downloading 

Wikipedia’s native XML dumps, automated welcome messages 

and associated metadata were removed. A random sample of 

10,000 articles was selected per language. This relatively small 

subset was chosen to reflect the size and quality of available 

resources for many low-resource agglutinative languages. 

The XML files were converted to JSON and then preprocessed 

using Python. We then used Python to strip formatting artifacts, 

punctuation, and markup. The resulting corpora, consisting of 

only characters, digits, and whitespace, were saved as plain text. 

Five tokenization strategies were applied: word-level, 

character-level, bigrams, trigrams, and BPE. BPE merges the 

most frequent character pairs until a target vocabulary size is 

reached.  

For example, “abcbabcbab” would be merged as follows: 

“a” + “b” = “ab” → “c” + “b” = “cb” → “ab” + “cb” = “abcb” 

and so on, until all characters are merged or an arbitrary 

vocabulary size is reached. 

Four BPE variants were trained with vocabulary sizes of 5,000, 

10,000, 25,000, and 50,000 subwords. Modern multilingual 

models usually employ vocabulary sizes of about 100,000 [6] 

so 50,000 should be enough for a monolingual model, 

especially if the goal is to avoid segmenting common 

morphemes. The BPE algorithm followed the implementation 

from the Massachusetts Institute of Technology 

YouTokenToMe library, a fast and unsupervised text tokenizer 

[7]. 

For non-BPE tokenization strategies, the Hugging Face datasets 

library was used to preprocess and convert the data into .arrow 

format [8]. Tokenization was implemented using sliding 

windows or whitespace splitting.  

Word embeddings were trained using gensim's Word2Vec 

implementation, with a vector size of 150 [9]. Performance was 

evaluated using Named Entity Recognition (NER), in which 

tokens are labeled with entity types such as B-Person, I-Date, 

or O (outside of any entity). Named Entity Recognition is often 

used to evaluate Word2Vec and other embedding models 

because it tests how well the model’s embeddings capture 

semantic and syntactic information.  

“B” corresponds to “Beginning,” (the first word that 

corresponds to an entity) while “I” corresponds to “Inside” 

(words that express a continuation of an entity). For example,  

Barack Obama lives in Honolulu . 

B-Person I-Person O O B-Location O 

 

Likewise, an example (with English translation) from the NER 

sets used is as follows: 

 

Yalnız Adam şarkısıyla tanınmıştır . 

Yalnız Adam with the song became famous . 

B-ART I-ART O O O 

 

Or more directly translated, “He became famous with the song 

Yalnız Adam.” 

The Turkish data came from the Turkish NLP Suite, already 

split into training and test sets in a 90/10 split. For Finnish, a 

dataset from MetaText.io was randomly divided 90/10 for 

training and evaluation [10][11]. Notably, the Turkish dataset 

was significantly larger and more diverse than its Finnish 

counterpart. 



 

 

      Fig. 1. This histogram shows uneven distribution between labels for 

Finnish, with most notably, “O” serving as a large majority of the labels. This 

will explain label skew in evaluation.  

Classification was performed using logistic regression with the 

Stochastic Average Gradient with Adaptivity (SAGA) solver 

from the sklearn library [12]. This solver was chosen for its 

convergence efficiency and suitability for large datasets with 

limited computational resources. Training was capped at 500 

epochs, which was sufficient for convergence (<0.0001 change 

per epoch), reducing computational strain and reducing the risk 

of overfitting. Final model evaluations were saved in .json 

format for analysis. 

IV. INITIAL RESULTS 

Word-level whitespace tokenization performed the best among 
both Turkish and Finnish. For the Turkish evaluation set, if the 
model answered “O” for every word, it would achieve an 
accuracy rate of 0.692. Likewise, for Finnish, answering “O” for 
each word would achieve an accuracy rate of 0.789. This results 
from “O”-labeled entities dominating the dataset, while actual 
entities occurred much less frequently  in both training and 
evaluation sets. Therefore, most models and tokenization 
strategies demonstrated minimal learning and association after 
training. 

TABLE 1. MODEL ACCURACIES (CORRECT 

PREDICTIONS DIVIDED BY TOTAL PREDICTIONS) 

Model 
Accuracy 

Word Char Bigrams Trigrams 

Turkish 0.715 0.695 0.698 0.694 

Finnish 0.809 0.789 0.789 0.790 

 BPE5k BPE10k BPE25k BPE50k 

Turkish 0.692 0.692 0.692 0.692 

Finnish 0.789 0.789 0.789 0.789 

 

 

 Fig. 2. This plot for Turkish word-level tokenization shows a variety of 
precision (true positives divided by total positive predictions) and recall (true 
positives divided by total correct predictions) levels for various categories. Many 
categories that did not have high representation in the dataset had neither recall 
nor precision.  

 

 Fig. 3. This plot for Turkish bigram-level tokenization shows a lower 
amount of precision and recall for various categories the model was tested on. 
Notably, the only category with 100% recall was “O.” 

This initial underperformance prompted a second round of 
experiments to improve precision and accuracy, especially 
among BPE models, which yielded zero entity recognition. 



 

V. ADJUSTMENTS 

Following the initial evaluation, which revealed 

disproportionately high accuracy on non-entity (O) tags and 

limited recognition of actual entities, a second round of 

experiments was conducted with revised preprocessing. A new 

quasi-random sample of 10,000 articles was selected from each 

language, this time filtered to include only articles with a 

minimum size of 4 KB to ensure better textual quality and 

content density. Despite initial filtering, many previously 

included articles were stubs, or less than 20 words. By ensuring 

all articles hit a minimum size, we not only expanded the corpus 

size but also improved text quality.  

In this iteration, capitalization and punctuation, including 

periods, commas, quotation marks, colons, and semicolons—

were preserved. Formatting artifacts such as brackets and 

asterisks were still removed. Retaining punctuation and case 

information was intended to mitigate the misclassification of 

tokens as non-entities (O), particularly when punctuation alone 

previously triggered such labels. Whitespace was also 

preserved across all tokenization strategies to better reflect 

natural word boundaries. With these enhancements, the goal 

was to provide cleaner, more informative input for the models 

and thereby improve performance on the NER evaluation sets. 

VI. ADJUSTED RESULTS 

After making the adjustments listed above, accuracy improved 

at the expense of model training time. The BPE models 

improved from the baseline accuracies of “O” only, with 

models with larger vocabulary sizes tending to have higher 

accuracies.  

 

TABLE 2.        IMPROVED MODEL ACCURACIES (CORRECT 

PREDICTIONS DIVIDED BY TOTAL PREDICTIONS) 

Model 
Accuracy 

Word Char Bigrams Trigrams 

Turkish 0.762 0.695 0.700 0.700 

Finnish 0.840 0.789 0.791 0.795 

 BPE5k BPE10k BPE25k BPE50k 

Turkish 0.701 0.704 0.708 0.713 

Finnish 0.789 0.793 0.797 0.803 

 

 

 

 

 

TABLE 3.        MODEL ACCURACY IMPROVEMENT (PERCENTAGE 

POINT INCREASE) 

Model 
Accuracy 

Word Char Bigrams Trigrams 

Turkish +4.7% 0.0% +0.2% +0.6% 

Finnish +3.1% 0.0% +0.2% +0.5% 

 BPE5k BPE10k BPE25k BPE50k 

Turkish +0.9% +1.2% +1.6% +2.1% 

Finnish 0.0% +0.4% +0.8% +1.4% 

 

Word-level tokenization yielded the most substantial accuracy 
gains, with improvements of +4.7 percentage points for Turkish 
and +3.1 for Finnish. These results demonstrate the importance 
of preserving orthographic cues like capitalization and 
punctuation, which are often lost in subword representations. 

In contrast, character-level tokenization showed no measurable 
improvement. This stagnation likely stems from its inability to 
encode morphological or lexical boundaries. While n-gram 
models (especially trigrams) showed marginal benefits, they still 
trailed behind full-word tokenization, suggesting that the added 
context was insufficient to compensate for fragmented structure. 
This aligns with statistical data on the Turkish language: the 
average character length of root words is 6.60, and the average 
suffix length is 3.56 [13]. Such lengths exceed typical n-gram 
spans, meaning key morphemes are being split across token 
boundaries, limiting the models’ abilities to learn coherent 
embeddings and representations. 

BPE models revealed a more nuanced trend. Although initially 
no better than the “O-only” baseline, accuracy improved steadily 
with vocabulary size, reaching 0.713 in Turkish and 0.803 in 
Finnish at a vocabulary of 50,000 words. This pattern confirms 
BPE’s dependence on adequate lexical coverage: with 
insufficient vocabulary, meaningful morphemes are split apart, 
but as more characters are merged, BPE can begin to 
approximate linguistic-based subword and suffix understanding. 

Together, these findings challenge the assumption that finer-
grained tokenization always yields better generalization, even 
for morphologically rich, low-resource contexts. Even in models 
designed for subword efficiency, scalability, and flexibility, 
there remains significant value in treating morphologically 
complex words as atomic units in low-resource scenarios.  

  



 

 

Fig. 4. This plot for Turkish BPE with a vocabulary size of 50,000 words 

shows a significant increase in both precision and recall for a variety of 

categories, in comparison to Fig. 5. 
 

 

Fig. 5. The original plot for Turkish BPE with a vocabulary of 50,000 words 
showed a complete lack of understanding for any entities other than “O.” This 
illustrates the classic issue of class imbalance in NER. 

VII. CONCLUSION 

This study demonstrates that tokenization strategy plays a 

critical role in training word embedding models for 

agglutinative languages. Word-level tokenization consistently 

outperformed subword approaches on NER tasks, particularly 

when paired with high-quality, well-structured text. While 

subword methods such as BPE improved with larger 

vocabularies, they remained less effective overall on moderate 

corpora. These findings suggest that, for many low-resource 

languages, preserving linguistic structure may outweigh the 

theoretical efficiency of statistical segmentation. 

In practical terms, developers building NLP tools for under-

resourced or indigenous languages may achieve better results 

using simpler, linguistically grounded preprocessing pipelines, 

particularly when annotated data is limited. These results also 

suggest that in agglutinative languages, the semantic coherence 

of full-word units may outweigh the statistical advantages of 

subword segmentation, especially in low-resource settings, 

unless vocabulary sizes become large enough to approximate 

full-word tokenization. 

While this study provides insight into the effectiveness of 

tokenization strategies for agglutinative languages, it is not 

without limitations. The corpora for Turkish and Finnish, 

though moderately sized, do not fully represent the conditions 

of truly low-resource languages, especially in terms of 

orthographic variation, dialectal diversity, and noisy or 

informal data. Additionally, the study focused exclusively on 

static embeddings and NER tasks, which may not fully capture 

the range of downstream effects in more complex NLP 

pipelines. The NER datasets also varied in quality: the Turkish 

dataset was about ten times larger than Finnish’s, with more 

diverse and varied label categories as well. Therefore, we were 

unable to make a comparative study of the two languages’ 

performance. Despite this, the overall trends across both 

languages suggest the robustness of this study’s findings. 

Future work could investigate whether these patterns persist 

under contextual embedding architectures such as BERT or 

ByT5 and assess their generalizability to other morphologically 

rich languages [6], [14]. While Turkish and Finnish served as 

proxies, future studies using annotated NER datasets in truly 

low-resource languages could validate these findings more 

directly, helping advance linguistic equity and enhancing 

representation in digital tools. 
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VIII. APPENDIX: NER LABEL DISTRIBUTION 

 



 

 
 

IX. FINNISH PLOTS PRE-CORRECTION: 

 
 

 

 

Other BPE plots are the same as BPE5k. 

  



 

 

 
 

  



 

X. TURKISH PLOTS PRE-CORRECTION 

 
 

 

Other BPE plots are the same as BPE5k. 

 

 



 

 

XI. FINNISH PLOTS POST-CORRECTION 

 



 

 

 



 

 

XII. TURKISH PLOTS POST-CORRECTION 

 



 

 

 



 

 
 

 

Code used can be found on Github: https://github.com/jinfanfrankhu/TokenizationResearch 
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